

Self-Assembled Monolayers Derived from Calix[4]resorcinarenes Exhibiting Excellent Desorption-Resistance and Their Applicability to Surface Energy Photocontrol

Sang-Keun Oh, Masaru Nakagawa, and Kunihiro Ichimura*

Research Laboratory of Resources Utilization, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503

(Received January 5, 1999; CL-990003)

Self-assembled monolayers exhibiting excellent desorption-resistance was readily available by the adsorption of crown conformers of *O*-carboxymethylated calix[4]resorcinarenes on aminated silica substrates through multi-point adsorption.

Self-assembled monolayers (SAMs) are prepared by surface adsorption to offer fundamental understanding of interfacial phenomena and to provide unlimited possibilities for applications in various fields.¹ From both of fundamental and practical viewpoints, their enhanced stability toward desorption is highly required. Recently we have described the adsorption of crown conformers of calix[4]resorcinarenes (CRAs) and their *O*-octacarboxymethylated derivatives (CRA-CMs) on a silica surface through hydrogen bonding to give rise to densely packed SAMs² and the application to prepare photofunctional monolayers incorporating azobenzene residues.³ The procedure to give this type of SAMs is very simple and convenient, but there have been a drawback for some purposes. Since the resulting SAMs are formed through hydrogen bonds between the polar heads and a silica surface, the exposure to polar solvents including water resulted in partial desorption of the macrocyclic amphiphiles to deteriorate the structure of SAMs.² An exceptional example is a CRA substituted with sugar residues at eight phenolic OH groups, which adsorbs on a silica plate even in an aqueous solution.⁴ In order to extend the applicability of the SAM architecture using CRA families, it is essential to overcome the desorption problem. We report here that the desorption of CRA-CMs forming densely packed monolayers is remarkably suppressed by COOH/NH₂ interactions in addition to the multi-point adsorption when a silica substrate is modified with an aminosilylating agent.

Aminosilylated silica plates were obtained by treating fused silica plates with a toluene solution of (3-aminopropyl)diethoxy-methylsilane in a conventional way.^{5,6} The CRA-CMs **1** and **2**⁷ were readily adsorbed on the aminosilylated silica by immersing them in dilute solutions of the CRA-CMs.⁸

Occupied molecular areas of CRA-CMs in the chemisorbed monolayers were estimated to be 2.2 nm² molecule⁻¹ for **1** and 2.3 nm² molecule⁻¹ for **2**, respectively, by using UV-visible

spectroscopy under assumption that their absorption coefficients in solution are not altered in SAMs.^{3b} These values are not far from the base area of CRA-CM (1.7 nm²)⁹ even though the molecules possess four bulky substituents, indicating that CRA-CMs form reasonably densely packed monolayers on the aminated plates.

Table 1. Desorption-resistance of CRA-CMs forming monolayers

Solvent	Resistance to desorption of 1 (2) (%) ^a	
	silica substrate	aminated substrate
Water ^b	0 (0)	100 (100)
Ethanol	30 (10)	100 (100)
THF	60 (0)	100 (95)
Hexane	100 (100)	100 (100)
2-Aminoethanol sol. ^c	n. d.	10 (10)
TsOH sol. ^d	n. d.	0 (0)

^aThe percentages indicate the remaining amounts of CRA-CMs estimated from UV-visible absorbance changes at λ_{max} after sonication for 20 min. The values in parenthesis present the desorption-resistance of **2**. ^bSonication was carried out for 1 h. ^cSonication was carried out for 10 min in a 10 wt% ethanol solution of 2-aminoethanol. ^dSonication was carried out for 10 min in an 1 wt% ethanol solution of *p*-toluenesulfonic acid.

Table 1 summarizes the desorption-resistance of CRA-CMs adsorbed on a virgin silica plate and an aminated silica plate after sonication of the plates at 25 °C in various solvents including organic acid and base solutions. CRA-CMs on silica plates were detached readily not only in water, but also in polar organic solvents, whereas essentially no desorption took place for CRA-CMs adsorbed on aminated silica substrates even after sonication. No desorption was detected in hexane for CRA-CMs adsorbed on both of silica and aminated silica substrates. However, the detachment of CRA-CM was induced outstandingly by treatment with an acidic and a basic ethanol solutions containing *p*-toluenesulfonic acid and ethanalamine, respectively. These results imply that the amino groups on an outmost surface of the aminated substrates and the carboxy groups at the upper rim of CRA-CMs hold together by ion pairing in addition to *van der Waals* interactions and hydrogen bonds. It is worthy to mention that one of the important factors to result in the strong adsorption of CRA-CMs on aminated plates may involve the capability of multi-point adsorption of their plural carboxy groups. The effect of the multi-point adsorption of CRA-CMs was confirmed by examining the desorption behavior of 10-[4-(hexylphenylazo)phenoxy]decanoic acid as a control from the aminated surface. The adsorbed monocarboxylic acid was readily washed off in polar solvents.

Grazing angle reflection-absorption infrared spectroscopy (FTIR-RAS) study was carried out on a CRA-CM monolayer adsorbed on an aminated Au substrate¹⁰ in place of those on aminated silica plates, since the latter gave no reliable spectroscopic information. It was found that the intensity of $\nu_{C=O}$ at 1740 cm⁻¹ relative to that of an internal standard band, $\nu_{as, ring-O-C}$, at 1248 cm⁻¹ is significantly decreased when compared with that in a KBr pellet. This situation stems from the preferential conformation of the C=O group in parallel with the surface and/or from the ionic bonding¹¹ to form carboxylates due to the surface adsorption, being consistent with the enhanced desorption-resistance of the SAMs.

The azobenzene moieties in SAM of **2** on the aminated silica plate exhibited high *E*-to-*Z* photoisomerizability up to 92% on irradiation with 365 nm light, while a 99% conversion was attained in THF. A striking result worthy to describe was observed for a monolayer of **1**. The level of *E*-to-*Z* conversion of the perfluoroctylazobenzene was only *ca.* 65% upon 365 nm irradiation. It is very likely that the decrease of the photoisomerizability of **1** in a monolayer arises from the enhancement of steric hindrance of the outmost substituents because of a larger cross-sectional area of perfluoroalkyl units (*ca.* 0.29 nm²)¹² than that of hydrocarbon units (*ca.* 0.20 nm²).¹³

Table 2. Contact angle changes for CRA-CMs on aminated substrates before and after irradiation with 365 nm light

CRA-CM	Probe liquid	Contact angle (deg)			$\Delta\theta$
		<i>E</i> -form	<i>Z</i> -form		
1	Water	104.3	103.8	0.5	
	Hexadecane	57.9	55.4	2.5	
2	Water	91.7	83.4	8.3	
	Hexadecane	4.8	0	4.8	

SAMs of CRA-CMs on aminated silica plates were sufficiently robust toward polar solvents to carry out reproducible observation of wettability for water before and after photoirradiation. Table 2 lists contact angles for water and hexadecane on the CRA-CM monolayers on aminated substrates before and after irradiation with 365 nm light. A relatively large decrease in a contact angle for water was observed on a SAM of **2** when compared with that of **1** after *E*-to-*Z* photoisomerization. Though the level of *E*-to-*Z* photoisomerization of **1** in SAM is lower than that of **2** as stated above, the insensitivity to the surface energy changes of **2** stems rather from the situation that perfluoroctyl substituents remain to be exposed to a topmost surface of SAM even after the photoisomerization. This is because of the peculiarity of perfluoroalkyls giving a lower surface energy. In the case of SAM of **1**, a larger contact angle change was observed for hexadecane than for water, in a contrast to the case of **2**. These results imply that contact angle changes triggered by the SAM of **1** reflects the enhanced disordering of the monolayer through *E*-to-*Z* photoisomerization, leading to the

modification of dispersion interactions, whereas the increased polarity effect is also involved in the SAM of **2**.

In conclusion, a novel and simple way to prepare SAMs of CRA-CM exhibiting excellent resistance to desorption in polar solvents was explored by using COOH/NH₂ interactions. The monolayers display a high level of *E*-to-*Z* photoisomerizability of azobenzenes incorporated and the ability to control surface free energies by light.

References and Notes

- 1 A. Ulman, "An Introduction to Ultrathin Organic Films; from Langmuir-Blodgett to Self-Assembly," Academic Press, Boston (1991).
- 2 E. Kurita, N. Fukushima, M. Fujimaki, Y. Matsuzawa, K. Kudo, and K. Ichimura, *J. Mater. Chem.*, **8**, 397 (1998).
- 3 a) K. Ichimura, N. Fukushima, M. Fujimaki, S. Kawahara, Y. Matsuzawa, Y. Hayashi, and K. Kudo, *Langmuir*, **13**, 6780 (1997); b) M. Fujimaki, S. Kawahara, Y. Matsuzawa, E. Kurita, Y. Hayashi, and K. Ichimura, *Langmuir*, **14**, 4495 (1998).
- 4 T. Fujimoto, C. Shimizu, O. Hayashida, and Y. Aoyama, *J. Am. Chem. Soc.*, **119**, 6676 (1997).
- 5 a) J. H. Moon, J. H. Kim, K. -J. Kim, T.-H. Kang, B. Kim, C.-H. Kim, J. H. Hahn, and J. W. Park, *Langmuir*, **13**, 4305 (1997); b) J. H. Moon, J. W. Shin, S. Y. Kim, and J. W. Park, *Langmuir*, **12**, 4621 (1996).
- 6 Park *et al.* indicate that the surface density of amino groups on the aminosilylated silica plates is 3.7 - 4.2 per nm². For a detail; see Ref. 5b.
- 7 4-(4-Perfluoroctylphenylazo)phenol or 4-(4-octylphenylazo)phenol was coupled with 2,8,14,20-tetrakis(3-iodopropyl)-4,6,10,12,16,18,22,24-octakis(ethoxycarbonylmethoxy)calix[4]arene, followed by hydrolysis of the octaester to give the corresponding **1** or **2**. For a detailed procedure; see Ref. 3.
- 8 The aminated substrates were immersed in a THF solution (1×10^4 mol dm⁻³) of **1** or **2** at 40 °C for 30 min. SAMs were obtained after rinsing with THF and drying at 80 °C for 30 min.
- 9 The value was estimated by π -A isotherm measurements of CRA-CMs incorporating azobenzene units according to Ref. 3b.
- 10 The aminated Au substrates were prepared by immersing cleaned Au substrates in a 1×10^3 mol dm⁻³ ethanolic solution of 2-aminoethanethiol in ethanol for 6 h at 25 °C.
- 11 Z. Liu, C. Zhao, M. Tang, and S. Cai, *J. Phys. Chem.*, **100**, 17337 (1996); L. Sun, R. M. Crooks, and A. J. Ricco, *Langmuir*, **9**, 1775 (1993).
- 12 C. H. Arrington, Jr. and G. D. Patterson, *J. Phys. Chem.*, **57**, 247 (1953); N. Higashi and T. Kunitake, *Chem. Lett.*, 105 (1986).
- 13 D. M. Small, "Handbook of Lipid Research 4. The Physical Chemistry of Lipids; From Alkanes to Phospholipids," Plenum Press, New York (1986).